The great importance of the \(t \) distribution in data analysis lies in the existence of numerous tests based upon it, such as the 1-sample \(t \), unpaired \(t \), and paired \(t \), as well as the use in calculating confidence intervals.

1 Definitions

Consider two independent random variables, \(Z \) which has a normal distribution with \(\mu = 0 \), \(\sigma^2 = 1 \), and \(C \) which has a chi-square distribution with \(k \) degrees of freedom. Then the ratio

\[
t_k = \frac{Z}{\sqrt{C/k}}
\]

is described as a \(t \) variable with \(k \) degrees of freedom. It should be noted incidentally that \(t_k^2 \) is distributed as \(F(1, k) \).

A special case arises when analyzing a sample of size \(n \) from a normal distribution with population mean \(\mu \) and population variance \(\sigma^2 \), because the sample mean

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

is normally distributed with mean \(\mu \) and variance \(\sigma^2/n \), while \(nS^2/\sigma^2 \) using

\[
S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

has a \(\chi^2 \) distribution with \(n - 1 \) degrees of freedom. Hence the statistic

\[
t_{n-1} = \frac{\bar{x} - \mu}{S/\sqrt{n-1}}
\]

has a \(t \) distribution with \(n - 1 \) degrees of freedom. Note that this \(t \) variable only has one unknown parameter, the population mean \(\mu \).

2 Simfit program ttest

Choose [A/Z] from the main Simfit menu and open program ttest when the following options will be available.
3 Degrees of freedom

An important use of the \(t \) distribution is when calculating confidence limits, for instance with a sample mean, or parameter estimate. The main thing to realize in such circumstances is that, although the mean value for \(t_n \) is zero irrespective of \(n \), the variance is heavily dependent on \(n \). This is why the confidence limits shrink as the sample size increases. Actually the \(t_n \) distribution is asymptotic to a standardized normal distribution as \(n \) increases, as shown by the next graph created from ttest.

Note how the area under the tails decreases rapidly as \(n \) increases from 2 to 6 but less slowly.
thereafter. A more detailed inspection of this will be clear from this table copied from the `ttest` results log file for a 95% confidence interval.

\[
\begin{align*}
P(t =< 4.303E+00) &= 0.975 *** P(t >= 4.303E+00) = 0.025, N = 2 \\
P(t =< 2.776E+00) &= 0.975 *** P(t >= 2.776E+00) = 0.025, N = 4 \\
P(t =< 2.447E+00) &= 0.975 *** P(t >= 2.447E+00) = 0.025, N = 6 \\
P(t =< 2.306E+00) &= 0.975 *** P(t >= 2.306E+00) = 0.025, N = 8 \\
P(t =< 2.228E+00) &= 0.975 *** P(t >= 2.228E+00) = 0.025, N = 10
\end{align*}
\]

4 Confidence range for the sample mean

Given \(\bar{x} \) and \(S^2 \) from a sample of size \(n \), then a symmetrical 100\((1 - \alpha)\)% confidence range for the population mean \(\mu \) can be constructed using the upper tail critical value \(t_{\alpha/2,n-1} \). We have that

\[
P \left(\frac{\bar{x} - \mu}{S/\sqrt{n-1}} \geq t_{\alpha/2,n-1} \right) = \alpha/2
\]

and

\[
P \left(\frac{\bar{x} - \mu}{S/\sqrt{n-1}} \leq -t_{\alpha/2,n-1} \right) = \alpha/2,
\]

so that

\[
P \left(\bar{x} - t_{\alpha/2,n-1}S/\sqrt{n-1} \leq \mu \leq \bar{x} + t_{\alpha/2,n-1}S/\sqrt{n-1} \right) = 1 - \alpha.
\]

Alternatively, note that it often causes confusion because an unbiased estimate of the population variance is not \(S^2 \) but the sample variance

\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2,
\]

so that an equivalent expression for \(t_{n-1} \) would then be

\[
t_{n-1} = \frac{\bar{x} - \mu}{s/\sqrt{n}}.
\]

whereupon

\[
P \left(\bar{x} - t_{\alpha/2,n-1}s/\sqrt{n} \leq \mu \leq \bar{x} + t_{\alpha/2,n-1}s/\sqrt{n} \right) = 1 - \alpha.
\]

using \(s^2 \) instead of \(S^2 \).

We see from the above table that the multipliers of the sample standard error required for a 95% confidence interval with sample sizes of \(n = 3, 5, 7, 9, \) and 11 would be 4.303, 2.776, 2.447, 2.306, and 2.228. Clearly, using the sample mean plus or minus twice the standard error as an approximate 95% confidence range will always underestimate the actual 95% confidence range unless the sample size exceeds 10, say.